Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 10 December 2018 © Author(s) 2018. CC BY 4.0 License.

Page 1

Isotopic Constraints on the Atmospheric Sources and Formation of

Nitrogenous Species in Biomass-Burning-Influenced Clouds

Yunhua Chang¹, Yanlin Zhang^{1*}, Jiarong Li², Chongguo Tian³, Linlin Song⁴,

Xiaoyao Zhai¹, Wenqi Zhang¹, Tong Huang¹, Yu-Chi Lin¹, Chao Zhu², Yunting

Fang⁴, Moritz F. Lehmann⁵, and Jianmin Chen^{2*}

¹Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science &

Technology, Nanjing 210044, China.

²Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP³), Department

of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University,

Shanghai 200433, China.

³Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai

Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.

⁴CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese

Academy of Sciences, Shenyang 110016, China.

⁵Aquatic and Isotope Biogeochemistry, Department of Environmental Sciences, University of

Basel, Basel 4056, Switzerland.

*Corresponding authors: Yanlin Zhang (dryanlinzhang@outlook.com) and Jianmin Chen

(jmchen@fudan.edu.cn).

20

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 10 December 2018 © Author(s) 2018. CC BY 4.0 License.

25

30

35

45

Page 2

Abstract

The interpretation of tropospheric cloud formation rests on understanding the sources and processes affecting aerosol constituents of the atmosphere that are preserved in cloudwater. However, this challenge is difficult to be quantitatively addressed based on the sole use of bulk chemical properties. Nitrogenous aerosols, mainly ammonium (NH₄⁺) and nitrate (NO₃⁻), play an important role in tropospheric cloud formation. Here we collected cloudwater samples at the summit of Mt. Tai (1545 m above sea level) in Eastern China during a long-lasting biomass burning (BB) event, and measured for the first time the isotopic compositions (mean $\pm 1\sigma$) of cloudwater nitrogen species (δ^{15} N-NH₄⁺ = -6.53 ± 4.96‰, δ^{15} N-NO₃⁻ = -2.35 ± 2.00‰, δ^{18} O-NO₃⁻ = $57.80 \pm 4.23\%$), allowing insights into their sources and potential transformation mechanism within the clouds. Large contributions of BB to the cloudwater NH₄⁺ (32.9 ±4.6%) and NO₃⁻ (28.2 ±2.7%) inventories were confirmed through a Bayesian isotopic mixing model, coupled with our newly-developed computational quantum chemistry module. Despite an overall reduction in total anthropogenic NO_x emission due to effective emission control actions and stricter emission standards for vehicles, the observed cloud δ^{15} N-NO₃- values suggest that NO_x emissions from transportation may have exceeded emissions from coal combustion. $\delta^{18}\text{O-NO}_3^-$ values imply that the reaction of OH with NO₂ is the dominant pathway of NO₃ formation (57 \pm 11%), yet the contribution of heterogeneous hydrolysis of dinitrogen pentoxide was almost as important (43 ± 11%).

1 Introduction

Nitrogenous aerosols, mainly nitrate (NO_3^-) and ammonium (NH_4^+) , formed from the emissions of nitrogen oxides $(NO_x = NO + NO_2)$ and ammonia (NH_3) , are major chemical components of aerosols, which serve as cloud condensation nuclei (CCN) and thus play an

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 10 December 2018 © Author(s) 2018. CC BY 4.0 License.

50

55

65

Page 3

important role during cloud formation in the troposphere (Gioda et al., 2011; van Pinxteren et al., 2016). Cloudwater containing nitrogenous compounds also represent a vital contributor to nitrogen (N) budgets of terrestrial (Li et al., 2016b; Liu et al., 2013) and marine ecosystems (Kim et al., 2014; Okin et al., 2011). However, the sources and formation processes of cloudwater N species are only poorly understood.

NO_x can be emitted from both anthropogenic and natural sources. Globally, over 50% of the NO_x emissions derive from combustion of fossil fuel (~ 25 Tg N yr⁻¹ (Jaegle et al., 2005; Richter et al., 2005; Duncan et al., 2016;)), with the remainder being primarily soil-related emissions (~ 9 Tg N yr⁻¹ (Lamsal et al., 2011; Price et al., 1997; Yienger et al., 1995; Miyazaki et al., 2017)), or deriving from biomass burning (~ 6 Tg N yr⁻¹), and lightning (2-6 Tg N yr⁻¹) (Anenberg et al., 2017; Levy et al., 1996). The atmospheric sinks of NO_x include the production of HNO_{3(g)} and the formation of aerosol NO₃ (Seinfeld and Pandis, 2012), the partitioning of which can vary with time (Morino et al., 2006). As for NH₃, over 90% of the NH₃ emissions in terrestrial ecosystems originate from agricultural production, such as livestock breeding and NH₃based fertilizer application (Paulot et al., 2014; Kang et al., 2016; Reis et al., 2009; Bouwman et al., 1997; Heald et al., 2012; Zhang et al., 2018; Balasubramanian et al., 2015; Huang et al., 2011). In the urban atmosphere, recent studies suggest that non-agricultural activities like wastewater discharge (Zhang et al., 2017), coal burning (Li et al., 2016a), solid waste (Reche et al., 2012), onroad traffic (Suarez-Bertoa et al., 2014), and green space (Teng et al., 2017) also contribute to NH₃ emissions. In reactions with H₂SO₄ and HNO₃, NH₃ contributes to the formation of NH₄⁺ salts, which typically make up from 20 to 80% of fine particle (PM_{2.5}) in the atmosphere (Seinfeld and Pandis, 2012).

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 10 December 2018 © Author(s) 2018. CC BY 4.0 License.

70

75

80

85

90

Page 4

Biomass burning (BB) is an important source of N in the atmosphere (Lobert et al., 1990; Souri et al., 2017). During the harvest/hot season of eastern China, agricultural BB frequently occurs and modifies the concentration and composition of aerosols in the atmosphere (Chen et al., 2017; Zhang and Cao, 2015). For example, about 50% of the N derived from biomass combustion can be released as NH₃ and NO_x to form particulate NH₄⁺ and NO₃⁻, which then account for over 80% of total nitrogenous species in BB smoke particles (Crutzen and Andreae, 1990). BB-induced aerosols have not only been associated with poor air quality and the detrimental effects on human health, they have also shown to exert manifold effects on the tropospheric clouds, altering regional or even global radiation budgets (Chen et al., 2014; Norris et al., 2016; Voigt and Shaw, 2015).

The optical and chemical properties of clouds (and thus their radiative forcing) are directly related to the aerosol and precipitation chemistry (Seinfeld et al., 2016). Moreover, clouds represent reactors of multiphase chemistry, contributing to many chemical transformations that would otherwise not take place, or would proceed at much slower rates (Herrmann et al., 2015; Lance et al., 2017; Ravishankara, 1997; Schurman et al., 2018; Slade et al., 2017). Understanding the sources and fate of nitrogenous species in BB-influenced clouds is particularly important to comprehensively assess the environmental impacts of BB. But this challenge is difficult to address based on the sole use of bulk chemical properties (as most often done in previous studies).

Given that the 15 N can be preserved between the sources and sinks of NO_x and NH₃, the N isotopic composition of NO₃⁻ (δ^{15} N-NO₃⁻) and NH₄⁺ (δ^{15} N-NH₄⁺) can be related to different sources of NO_x and NH₃, and thus delivers useful information regarding the partitioning of the origins of atmospheric/cloudwater NO_x and NH₃, respectively (Hastings et al., 2013; Michalski et al., 2005; Morin et al., 2008; Chang et al., 2018). Moreover, the oxygen isotope composition of NO₃⁻ (δ^{18} O-NO₃⁻) is largely determined by chemical reactions rather than the source, as it is

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 10 December 2018 © Author(s) 2018. CC BY 4.0 License.

95

100

105

110

Page 5

primarily modulated by the atmospheric exchange reactions of the oxygen isotope. Therefore, $\delta^{18}\text{O-NO}_3$ has the potential to indicate the relative importance of various NO_3 formation pathways (Alexander et al., 2009; Elliott et al., 2009). To our knowledge, there are no reports on the N and

O isotopic composition of nitrogenous species in cloudwater.

End of July 2015, a large-scale BB event occurred over eastern and northern China. We took advantage of this special event to collect cloudwater samples at a high-altitude mountaintop site in the North China Plain, and to calibrate the isotopic signatures BB events leave in the N pool of clouds. Integrating cloudwater nitrogenous species isotope data (δ^{15} N-NH₄⁺, δ^{15} N-NO₃⁻ and δ^{18} O-NO₃⁻) in a Bayesian isotopic mixing model coupled with a newly developed computational quantum chemistry module (Chang et al., 2018), and using an isotopic mass balance approach, the sources and production pathways of inorganic nitrogen in cloudwater were quantified.

2 Materials and Methods

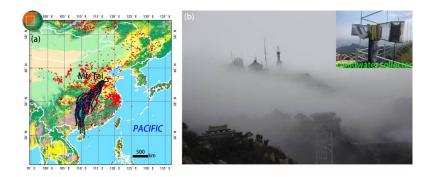
2.1 Cloudwater Sample Collection

Mt. Tai (117°13′ E, 36°18′ N; 1545 m above sea level) is a world-recognized geopark of key natural, historical and cultural significance, located in the eastern North China Plain (Fig. 1). It belongs to China's most important agricultural and industrial production areas, and the composition of the atmosphere near the mountain can be considered representative with regards to the quality and levels of atmospheric pollution in the region (Li et al., 2017; Liu et al., 2018). Given the opportunistic nature of this study, cloudwater sampling commenced at the summit of Mt. Tai three days after the fire began (08/01/2015 19:12 to 08/03/2015 6:12; Table 1). In total, six cloudwater samples were collected using a single-stage Caltech active strand cloud-water collector (CASCC), as described by (Demoz et al., 1996). The cloud collector was cleaned prior

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 10 December 2018 © Author(s) 2018. CC BY 4.0 License.

115


120

125

Page 6

to each sampling using high-purity deionized water. After sampling, cloud samples were filtered immediately using disposable syringe filters (0.45 µm) to remove any suspended particulate matter, and then stored in a freezer at -80 °C until further analysis. More details on the monitoring site and sampling procedures can be found elsewhere (Li et al., 2017).

Figure 1. (a) Location of Mt. Tai (triangle) and twenty-four 48-h back trajectories (black lines) of air masses arriving at Mt. Tai on 1 August 2015 (4:00 UTC) at an altitude 1500-m a.s.l (http://ready.arl.noaa.gov/HYSPLIT.php). The base map of land use in China was modified from Chang et al. (2018). The red dots represent the positions of wildfires between 29 and 31 July, 2015, based on moderate-resolution imaging spectroradiometer (MODIS) (http://modis-fire.umd.edu). (b) Field photos of clouds-shrouded Mt. Tai and the cloudwater collector.

2.2 Chemical and Isotopic Analysis

Inorganic ions (including SO₄²⁻, NO₃⁻, Cl⁻, NH₄⁺, K⁺, Ca²⁺, Mg²⁺, and Na⁺), as well as levoglucosan, a specific tracer of biomass burning, in cloudwater samples were analyzed using a DionexTM ICS-5000⁺ system (ThermoFisher Scientific, Sunnyvale, USA). Detailed information regarding sample processing, pre-treatment, chemical analyses, analytical protocol adaption, detection limits, and method errors/reproducibility can be found elsewhere (Cao et al., 2016, 2017).

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 10 December 2018 © Author(s) 2018. CC BY 4.0 License.

130

135

140

145

Page 7

Analysis of the isotopic compositions of NH_4^+ ($\delta^{15}N-NH_4^+$) and NO_3^- , ($\delta^{15}N-NO_3^-$ and $\delta^{18}O-NO_3^-$) was based on the isotopic analysis of nitrous oxides (N_2O) after chemical conversion of the respective target compound. More precisely, dissolved NH_4^+ in cloudwater samples was oxidized to NO_2^- by alkaline hypobromite (BrO^-), and then reduced to N_2O by hydroxylamine hydrochloride ($NH_2OH.HCl$) (Liu et al., 2014). NO_3^- was initially transformed to NO_2^- by cadmium, and then further reduced to N_2O by sodium azide (NaN_3) in an acetic acid buffer (McIlvin and Altabet, 2005; Tu et al., 2016). The produced N_2O was analyzed using a purge and cryogenic trap system (Gilson GX-271, IsoPrime Ltd., Cheadle Hulme, UK), coupled to an isotope ratio mass spectrometer (PT-IRMS) (IsoPrime 100, IsoPrime Ltd., Cheadle Hulme, UK). In order to correct for any machine drift and procedural blank contribution, international NH_4^+ (IAEA N1, USGS 25, and USGS 26) and NO_3^- (IAEA N3, USGS 32, and USGS 34) standards were processed in the same way as samples, and sample values were corrected using conventional standard bracketing techniques. The analytical precision for both multiple N and N0 isotopic analyses was better than N1, N2 in N3 in N3 in N4 in N5.

2.3 Bayesian Mixing Model Analysis

By taking the uncertainty associated with the N isotopic signatures of multiple sources and associated isotope fractionation during (trans-)formations into account, the Bayesian method is more appropriate than simple linear mixing modeling to yield estimates on the source partitioning of a mixture like air pollutants (Chang et al., 2016; Chang et al., 2018). The relative contribution of each source in Bayesian theorem is expressed as:

$$P(f_q | data) = \theta(data | f_q) \times P(f_q) / \sum \theta(data | f_q) \times P(f_q)$$

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 10 December 2018 © Author(s) 2018. CC BY 4.0 License.

155

160

165

170

Page 8

where $\theta(\text{data}|f_q)$ and $P(f_q)$ represent the likelihood of the given mixed isotope signature, and the pre-determined probability of the given state of nature, based on prior information, respectively. The denominator represents the numerical approximation of the marginal probability of the data. Here the Bayesian mixing model MixSIR (stable isotope mixing models using sampling-importance-resampling) was used to disentangle the various potential NH₃ and NO_x sources contributing to the cloudwater NH₄⁺ and NO₃⁻ pools, respectively, by forming the true probability distributions through generating 10000 solutions of source apportionment. Details on the model approach can be found in SI Text S1.

The measured $\delta^{15}\text{N-NO}_3^-$ values of cloudwater samples depend on the $\delta^{15}\text{N}$ signatures of the original NO_x sources ($\delta^{15}\text{N-NO}_x$), the N isotope fractionation between nitrogen oxides (i.e., NO and NO₂ (Walters et al., 2016)), and the N isotope enrichment factor (ϵ_N) associated with the kinetic transformation of NO_x to HNO₃ (Walters and Michalski, 2015). ϵ_N is considered a hybrid of two dominant processes: one is the reaction of NO₂ and OH radicals to form NO₃⁻, the other is the heterogeneous hydrolysis of dinitrogen pentoxide (N₂O₅) with water to form NO₃⁻. We recently developed a quantum chemistry computation module to quantify the N fractionation during nitrate formation, which had been validated by field measurements (Chang et al., 2018). Here this module was adopted to calculate the N isotope fractionation during NO₃⁻ formation, and in turn to correct the raw $\delta^{15}\text{N-NO}_3^-$ values of cloudwater samples.

While the N isotopic source signatures of NO_x are relatively well constrained (Table S1), this is not the case for NH₃. We recently established a pool of isotopic source signatures of NH₃ in eastern China, in which livestock breeding and fertilizer application were identified to produce NH₃ with a $\delta^{15}N$ of -29.1 \pm 1.7‰ and -50.0 \pm 1.8‰, respectively (Chang et al., 2016). Although fossil-fuel combustion, urban waste, and natural soils also represent potential sources of NH₃, their

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 10 December 2018 © Author(s) 2018. CC BY 4.0 License.

175

180

185

190

195

Page 9

impacts are probably minor compared to that of agricultural and biomass burning emissions, at least on a regional (or greater) scale (Kang et al., 2016). For the N isotope signature of biomass burning-derived NH₃ we assumed 12‰ (Kawashima and Kurahashi, 2011), a value that has also been applied in other recent isotope-based source apportionment studies (e.g., Chellman et al., 2016; Wang et al., 2017a).

3 Results and Discussion

3.1 Chemical characterization of biomass-burning-influenced clouds

The moderate-resolution imaging spectroradiometer (MODIS) wildfire map (Fig. 1) shows that there were intensive biomass burning events occurring over mainland China, end of July 2015, just before the study period. Moreover, analysis of the back trajectories of air masses at the study site revealed the strong influence by atmospheric transport from regions that also experienced intensive biomass burning events shortly before the sampling campaign. It can thus be assumed that large amounts of BB-related pollutants were transported from the southwest to the sampling site at Mt. Tai. Table 1 compiles sample information and results from the chemical and isotopic analysis of cloudwater samples in this study. The concentrations of NO₃⁻ and NH₄⁺ ranged from 4.9 to 19.9 μg ml⁻¹ (10.1 μg ml⁻¹ on average), and from 4.9 to 18.0 μg ml⁻¹ (9.1 μg ml⁻¹ on average), respectively, much higher than during non-BB seasons (Chen et al., 2017; Desyaterik et al., 2013; Li et al., 2017, 2018; Lin et al., 2017). Similarly, levoglucosan in our cloudwater samples varied between 12.1 and 35.1 μg L⁻¹ (19.9 μg L⁻¹ on average), and concentrations were thus one order of magnitude higher than those documented during non-BB seasons (Boone et al., 2015; Fomba et al., 2015). Although levoglucosan can be oxidized by OH radicals in the tropospheric aqueous phase (Sang et al., 2016), it is nevertheless a reliable marker compound for BB due to its high

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 10 December 2018 © Author(s) 2018. CC BY 4.0 License.

200

205

210

Page 10

emission factors and relatively high concentrations in the ambient aerosols (Hoffmann et al., 2010). In our study, the concentrations of NO_3^- ($r^2 = 0.55$) and NH_4^+ ($r^2 = 0.66$) are strongly correlated with that of levoglucosan, suggesting that the pronounced increase of NO_3^- and NH_4^+ levels observed here can at least be partly attributed to BB activities during the study period. Globally, BB accounts for around 10% of NH_3 and NO_x emissions (Benkovitz et al., 1996; Bouwman et al., 1997; Olivier et al., 1998; Schlesinger and Hartley, 1992).

Table 1. Sampling details and results of chemical and isotopic analysis for collected cloudwater samples.

Date	Local time	NO ₃ - (mg L-1)	NH ₄ ⁺ (mg L ⁻¹)	levoglucosan (μg L ⁻¹)	δ^{15} N-NO ₃ ⁻ (‰)	δ ¹⁸ O- NO ₃ - (‰)	δ ¹⁵ N-NH ₄ ⁺ (‰)
Aug 1	19:12-22:58	19.86	17.99	35.06	-0.22	65.46	3.62
	23:45-08:25	4.88	4.92	12.11	-1.28	55.01	3.85
Aug 2	09:10-12:19	5.57	5.81	23.60	-0.40	59.84	0.05
	12:55-18:30	13.24	11.51	18.67	-4.18	55.66	11.34
	20:02-23:06	10.06	7.74	13.63	-3.11	56.63	12.99
	23:48-06:12	6.71	6.59	16.42	-4.92	54.19	7.33

3.2 Isotopic characterization of biomass-burring-influenced clouds

The N (and O) isotopic composition of cloudwater nitrogenous species was more (NH₄⁺) or less (NO₃⁻) variant (Table 1), with the average δ^{15} N values of 6.53‰ and -2.35‰ for NH₄⁺ and NO₃⁻, respectively. The average δ^{18} O-NO₃⁻ value was 57.80‰. These values are generally different from gas, rainwater, and aerosol values measured worldwide (Fig. 2). Various atmospheric processes can influence the isotopic composition of atmospheric nitrogenous species including: the original emission source of NO_x, seasonality of oxidation pathways, isotope fractionation

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 10 December 2018 © Author(s) 2018. CC BY 4.0 License.

215

220

225

230

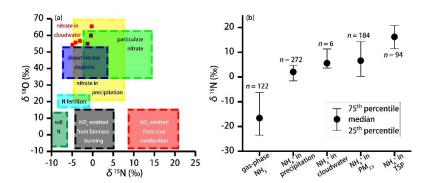
Page 11

during transport, partitioning between wet and dry components, and spatial gradients in atmospheric chemistry (Elliott et al., 2007; Hastings et al., 2003). These aspects may affect the $\delta^{15}N$ and $\delta^{18}O$ values differentially. For example, the $\delta^{15}N$ of atmospheric NO_3^- retains spatial changes in the original NO_x signature quite well, in contrast to the $\delta^{18}O$. On the other hand, the $\delta^{18}O$ most strongly depends on the oxidation chemistry and formation pathway in the atmosphere (see below).

At present, there are no other reports on the isotope ratios of NO₃⁻ and NH₄⁺ in cloudwater, and a comparison is possible only with isotope data from precipitation and aerosol N. In Fig. 2a, N isotopic differences for NO_x sources are greater (35%), than for δ^{18} O-NO_x. In fact, the oxygen isotope signature of NO_x is mainly determined by chemistry rather than by the source (see discussion below), and thus, δ^{18} O measurements cannot be used to address the uncertainty of the NO_x sources that may remain when just looking at $\delta^{15}N$ values alone. For cloudwater, the observed δ^{15} N and δ^{18} O values of NO₃ (the secondary product of NO_x) overlap with that of precipitation and particulate matter, suggesting that there is a link between different scavenging processes of atmospheric pollutants. As shown in Fig. 2b, the δ^{15} N values of aerosol NH₄⁺ are systematically higher than that of NH₃. Significant ε_N during the conversion of gas to aerosol (up to 33%) has been proposed to alter the δ^{15} N values during the transformation of the source (NH₃) to the sink (particulate NH₄+). Indeed, our compilation of previous results (Fig. 2b) reveals that particulate NH_4^+ (particularly in the coarse aerosol fraction) is more enriched in ^{15}N than NH_3 (by > 23% on average), as well as NH₄⁺ in precipitation (by 18‰ on average). This can most likely be attributed to the preferential absorption ¹⁴N-NH₃ associated with washout during precipitation. However, no significant difference in the δ^{15} N-NH₄⁺ exists between fine particles (PM_{2.5}) and cloudwater, Discussion started: 10 December 2018 © Author(s) 2018. CC BY 4.0 License.

235

240


245

250

Page 12

indicating that NH_4^+ in cloudwater is primarily derived from particulate NH_4^+ instead of NH_3 absorption.

Figure 2. (a) Observed range of typical δ^{18} O and δ^{15} N values of NO₃⁻ and NO_x for different sources (adapted from Fenech et al. (2012)). The red squares represent nitrate isotope data in cloudwater (this study). (b) The 25th percentiles, median and 75th percentiles for the δ^{15} N values of the ambient NH₃ (Chang et al., 2016; Felix et al., 2013; Savard et al., 2018; Smirnoff et al., 2012) and NH₄⁺ in precipitation (Fang et al., 2011; Leng et al., 2018; Yang et al., 2014; Zhang et al., 2008), cloudwater (this study), PM_{2.5} (particulate matter with aerodynamic diameter less than 2.5 μm; (Lin et al., 2016; Park et al., 2018; Proemse et al., 2012; Smirnoff et al., 2012), and TSP (particulate matter with aerodynamic diameter less than 100 μm (Kundu et al., 2010; Savard et al., 2018; Yeatman et al., 2001) are shown.

3.3 Isotope-based assessment of the sources and formation of nitrogenous species in clouds

Using the MixSIR model, the relative contribution of four NH₃ sources to NH₄⁺ can be calculated, based on the isotope data of ambient δ^{15} N-NH₄⁺, and considering the N fractionation and prior information on the site. As upper limit for the N isotope enrichment factor associated with the conversion of NH₃ to NH₄⁺ ($\epsilon_{NH_7^+-NH_8}$), we assumed 33% when using MixSIR, but also

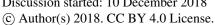
Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 10 December 2018 © Author(s) 2018. CC BY 4.0 License.

255

260

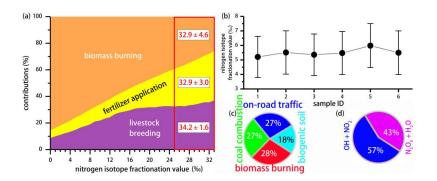
265



Page 13

considered lower values for $\epsilon_{NH_2^+-NH_2}$ (Fig. 3a) (given the conflicting evidence with regards to $\epsilon_{NH_4^+-NH_2}$; e.g., Deng et al., 2018; Li et al., 2012). Dependent of the choice for $\epsilon_{NH_4^+-NH_2}$ (between 0‰ to 33‰ proposed by Heaton et al. (1997)) the relative contribution of biomass burning, fertilizer application, and livestock breeding to NH₄⁺ in cloudwater ranges from 25.9% to 85.4%, 5.9% to 37.0%, and 8.7% to 85.4%, respectively. Irrespective of the uncertainty related to $\epsilon_{NH_4^+-NH_3}$, it is evident that biomass burning represents an important NH3 source, validating our isotope approach. Our sampling site was located in the North China Plain, also known as the granary of China. Although non-agricultural NH₃ emissions like on-road traffic are important in the urban atmosphere (Chang et al., 2016), their contribution must be considered insignificant with respect to fertilizer application and livestock breeding in this region (Kang et al., 2016). Besides, coalbased heating in China is suspended during summertime, and coal combustion has been demonstrated to be a minor contributor of total NH₃ emissions (Li et al., 2016a). Hence the partitioning between the three main NH₃ sources appears plausible. Moreover, existing emission inventory data confirm that the ratio of NH3 emissions in North China Plain from livestock breeding (1658 kt) and fertilizer application (1413 kt) was 1.17 (Zhang et al., 2010), which is very close to our estimate (between 0.98 and 1.14) when $\epsilon_{NH_4^+-NH_3} \ge 25\%$. For a $\epsilon_{NH_4^+-NH_3}$ range that we consider most plausible (i.e. between 25% and 33%), the relative cloudwater NH₄⁺ source partitioning between biomass burning, fertilizer application, and livestock is $32.9 \pm 4.6\%$, $32.9 \pm$ 3.0%, and 34.2 \pm 1.6%, respectively (indicated as red square in Fig. 3a).

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1196 Manuscript under review for journal Atmos. Chem. Phys.


Discussion started: 10 December 2018

Page 14

270

275

280

285

Figure 3. (a) Source partitioning estimates for NH₄⁺ in cloudwater as a function of $\epsilon_{NH_3 \to NH_4^+}$. The red square highlights the best-guess estimates based on $\epsilon_{NH_4^+ - NH_3} \ge 25\%$). (b) Whisker plot of the N fractionation for the conversation of NO_x to NO_3^- (ϵ_{NO_5-NO}) calculated by the computational quantum chemistry (CQC) module. The upper line, dot, and bottom line indicate the 25th percentile, median, and 75th percentile, respectively. Refer to Table 1 for sample ID. (c) Overall contribution of various NO_x sources to NO₃ in cloudwater as estimated by the MixSIR model. (d) Overall contribution of the two dominant pathways to NO₃⁻ formation in cloudwater, as estimated by the MixSIR model.

The CQC module in MixSIR has been proven a robust tool to quantify the N isotope enrichment factor during NO_x - NO_3 ⁻ conversion (ϵ_{NO_7 - NO_2) (e.g., Zong et al., 2017, Chang et al., 2018). Cloudwater sample-based data from this study reveal that ϵ_{NOZ-NO} values fall into a small range (5.21% to 5.98%) (Fig. 3b), suggesting robust isotope effects during the N isotopic exchange reactions. Knowing $\epsilon_{NO_2^--NO_2}$, the overall contribution of various NO_x sources to NO_3^- in cloudwater can be estimated (Fig. 3c). As was expected, biomass burning was the largest contributor (28.2 \pm 2.7%), followed by on-road traffic (27.1 \pm 2.2%), coal combustion (26.8 \pm 3.4%), and biogenic soil (17.9 \pm 3.9%). The fundamental importance of biomass burning-emitted

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 10 December 2018 © Author(s) 2018. CC BY 4.0 License.

290

295

300

Page 15

 NO_x to NO_3^- in cloudwater is supported by the observed correlation between the concentrations of levoglucosan and biomass burning-derived NO_3^- ($r^2 = 0.66$). The average contribution ratio of coal combustion and on-road transportation to NO_x emissions in our study (0.99) is slightly lower than that calculated from regional emission inventories (9.0 Tg/7.4 Tg = 1.22) (Zhao et al., 2013). The apparent difference is likely real, and reflects the fact that NO_x emissions by anthropogenic activities changed significantly since 2010: a 17% total emission decrease between 2010 and 2017 can primarily be attributed to upgraded emission standards and new "ultra-low emission" techniques in the coal-fired power plant sector, given that traffic-emitted NO_x likely increased as a consequence of the continuous expansion of auto trade market during the last decade (Chang et al., 2018). In turn, our source partitioning estimate probably reflects the most updated status of NO_x emissions in China, where transportation-related NO_x emissions have reached levels that are comparable to NO_x emissions by coal combustion. In this regard, our study demonstrates that Bayesian-based isotopic mixing modeling can be an effective and timely approach to track rapid emissions changes of NO_x in a fast developing country like China.

The O isotope fractionation during the conversion of NO_x to HNO₃/NO₃- $(\epsilon_{O_{\left(NO_x \leftrightarrow HNO_3\right)}} / \epsilon_{O_{\left(NO_x \leftrightarrow NO_3^-\right)}}) \text{ involves two oxidation pathways}$

$$\begin{split} & \varepsilon_{O_{\left(NO_{x} \leftrightarrow NO_{3}^{-}\right)}} = \varepsilon_{O_{\left(NO_{x} \leftrightarrow HNO_{3}\right)}} = \gamma \times \varepsilon_{O_{\left(NO_{x} \leftrightarrow NO_{3}^{-}\right)_{OH}}} + \left(1 - \gamma\right) \times \varepsilon_{O_{\left(NO_{x} \leftrightarrow pNO_{3}^{-}\right)_{H_{2}O}}} \\ & = \gamma \times \varepsilon_{O_{\left(NO_{x} \leftrightarrow HNO_{3}\right)_{OH}}} + \left(1 - \gamma\right) \times \varepsilon_{O_{\left(NO_{x} \leftrightarrow HNO_{3}\right)_{H_{2}O}}} \end{split} \tag{1}$$

where $\gamma/(1-\gamma)$ represents the contribution ratio of the isotope fractionation associated with

305 the formation of HNO₃/NO₃⁻ through the "OH+NO₂" pathway ($\epsilon_{O(NO_x \leftrightarrow NO_3^-)_{OH}}$) and the hydrolysis

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 10 December 2018 © Author(s) 2018. CC BY 4.0 License.

315

Page 16

of dinitrogen pentoxide (N₂O₅) ($^{\epsilon_{O(NO_x \leftrightarrow NO_3^-)_{H_2O}}}$), respectively. The δ^{18} O value of HNO₃ produced by the former process reflects the O atom partitioning of 2/3 O₃ and 1/3 OH:

$$\begin{split} & \epsilon_{O\left(NO_{x} \leftrightarrow NO_{3}^{-}\right)_{OH}} = \epsilon_{O\left(NO_{x} \leftrightarrow HNO_{3}\right)_{OH}} = \frac{2}{3} \epsilon_{O\left(NO_{2} \leftrightarrow HNO_{3}\right)_{OH}} + \frac{1}{3} \epsilon_{O\left(NO \leftrightarrow HNO_{3}\right)_{OH}} \\ & = \frac{2}{3} \left[\frac{1000 \binom{18}{\alpha_{NO_{2}/NO}} - 1 \binom{1}{1 - f_{NO_{2}}}}{\left(1 - f_{NO_{2}}\right) + \binom{18}{\alpha_{NO_{2}/NO}} \times f_{NO_{2}}} + \left(\delta^{18} \text{O-NO}_{x}\right) \right] + \\ & \frac{1}{3} \left[\left(\delta^{18} \text{O-H}_{2} \text{O}\right) + 1000 \binom{18}{\alpha_{OH/H_{2}O}} - 1 \right) \right] \end{split}$$

As for the δ^{18} O value of HNO₃ formed during hydrolysis of N₂O₅, 5/6 of the O atoms is derived from O₃ and 1/6 from OH (Hastings et al., 2003):

$$\varepsilon_{O(NO_x \leftrightarrow NO_3^-)_{H_2O}} = \varepsilon_{O(NO_x \leftrightarrow HNO_3)_{H_2O}} = \frac{5}{6} \left(\delta^{18} O - N_2 O_5 \right) + \frac{1}{6} \left(\delta^{18} O - H_2 O \right)$$
(3)

where $^{f_{NO_2}}$ refers to the fraction of NO_2 in the total NO_x pool. Values for $^{f_{NO_2}}$ vary between 0.2 and 0.95 (Walters and Michalski, 2015). $\delta^{18}O$ -X is the O isotopic composition of X. The range of $\delta^{18}O$ -H₂O can be approximated using an estimated tropospheric water vapor $\delta^{18}O$ range of -25%-0% (Zong et al., 2017). The $\delta^{18}O$ of NO_2 and N_2O_5 varies between 90% and 122% (Zong et al., 2017). $^{18}\alpha_{NO_2/NO}$ and $^{18}\alpha_{OH/H_2O}$ represent the equilibrium O isotope fractionation factor between NO_2 and NO_2 and OH and OH

$$1000 \left({}^{m}\alpha_{X/Y} - 1 \right) = \frac{A}{T^{4}} \times 10^{10} + \frac{B}{T^{3}} \times 10^{8} + \frac{C}{T^{2}} \times 10^{6} + \frac{D}{T} \times 10^{4}$$
(4)

where A, B, C, and D are experimental constants over the temperature range of 150-450 K.

Based on Equations 1-4 and measured values for $\delta^{18}\text{O-NO}_3$ of cloudwater, a Monte Carlo

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 10 December 2018 © Author(s) 2018. CC BY 4.0 License.

325

330

335

340

Page 17

simulation was performed to generate 10000 feasible solutions. The error between predicted and measured δ^{18} O was less than 0.5‰.

Using the measured $\delta^{18}O$ and equations 1-4 (and the assumptions above), we can calculate γ , and the relative importance of the two oxidation pathways of NO_3^- formation (Fig. 3d). On average, 57% NO_3^- formation can be attributed to the " $NO_2 + OH$ " pathway, and 43% to the " $N_2O_5 + H_2O$ " pathway. In the low-latitude regions, where atmospheric OH concentrations are highest, particulate NO_3^- production via the " $NO_2 + OH$ " pathway predominates (up to 87%) (Alexander et al., 2009). Sampling during summertime, oxidation of NO_2 through OH was expected to be the dominant pathway of nitrate formation, in accordance with observations from the subtropics (Hastings et al., 2003). However, our results highlight that N_2O_5 hydrolysis can be an almost equally important process as the oxidization of NO_2 with OH with regards to the NO_3^- formation in cloudwater (Wang et al., 2017b).

4 Conclusions

For the first time, we measured the isotopic composition of nitrogenous species in cloudwater at the summit of Mt. Tai during a long-lasting biomass burning event, in order to investigate the sources and process involved in cloudwater NO_3 -/ NH_4 + formation, and in turn to test our isotope-balance approach to constrain N source partitioning in cloudwater. Using a Bayesian isotope mixing model, the δ^{15} N-based estimates confirm that at least transiently biomass burning related NH_3 and NO_x emissions is a major source of cloudwater N. Moreover, our data are in accordance with regional emission inventories for both NH_3 and NO_x , validating the Bayesian isotope mixing model approach. Based on cloud water nitrate δ^{18} O measurements, the reaction of NO_2 with OH turned out to be the dominant pathway to form cloud nitrate, yet the contribution from the heterogeneous hydrolysis of N_2O_5 to NO_3 - is almost equally important. Our study

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 10 December 2018 © Author(s) 2018. CC BY 4.0 License.

345

350

355

360

Page 18

underscores the value of cloud-water dissolved inorganic nitrogen isotopes as carrier of

quantitative information on regional NO_x emissions. It sheds light on the origin and production

pathways of nitrogenous species in clouds and emphasizes the importance of BB-derived

nitrogenous species as cloud condensation nuclei in China's troposphere. Moreover, it highlights

the rapid evolution of NO_x emissions in China. Despite an overall reduction in total anthropogenic

NO_x emission due to effective emission control actions and stricter emission standards for vehicles,

the relative contribution of transportation to total NO_x emissions has increased over the last decade

and may already have exceeded emissions from the power sector.

Data availability

All data used to support the conclusion are presented in this paper. Additional data are

available upon request. Please contact the corresponding authors (Yanlin Zhang

(dryanlinzhang@outlook.com) and Jianmin Chen (jmchen@fudan.edu.cn)).

Acknowledgments

This study was supported by the National Key R&D Program of China (Grant no.

2017YFC0212700, task 1 and 4), National Natural Science Foundation of China (Grant nos.

41705100, 91644103), the Provincial Natural Science Foundation of Jiangsu (Grant nos.

BK20180040, BK20170946), University Science Research Project of Jiangsu Province

(17KJB170011), the University of Basel research funds, the Priority Academic Program

Development of Jiangsu Higher Education Institutions (PAPD), and through Program for

Changjiang Scholars and Innovative Research Team in University of Ministry of Education of

China (PCSIRT).

Discussion started: 10 December 2018 © Author(s) 2018. CC BY 4.0 License.

375

390

395

Page 19

365 References

- Alexander, B., Hastings, M. G., Allman, D. J., Dachs, J., Thornton, J. A., and Kunasek, S. A.: Quantifying atmospheric nitrate formation pathways based on a global model of the oxygen isotopic composition (Δ¹⁷O) of atmospheric nitrate, Atmos. Chem. Phys., 9, 5043-5056, https://doi.org/10.5194/acp-9-5043-2009, 2009.
- Anenberg, S. C., Miller, J., Minjares, R., Du, L., Henze, D. K., Lacey, F., Malley, C. S., Emberson, L., Franco, V., Klimont, Z., Heyes, C.: Impacts and mitigation of excess diesel-related NO_x emissions in 11 major vehicle markets. Nature, 545, 467-471, 2017.
 - Balasubramanian, S., Koloutsou-Vakakis, S., McFarland, D. M., Rood, M. J.: Reconsidering emissions of ammonia from chemical fertilizer usage in Midwest USA, J. Geophys. Res., 120, 6232-6246, 2015.
 - Benkovitz, C. M., Scholtz M. T., Pacyna J., Tarras ón L., Dignon J., Voldner E. C., Spiro P. A., Logan J. A., and Graedel T. E.: Global gridded inventories of anthropogenic emissions of sulfur and nitrogen, J. Geophys. Res., 101, 29239-29253, https://doi.org/10.1029/96JD00126, 1996.
- Boone, E. J., Laskin, A., Laskin, J., Wirth, C., Shepson, P. B., Stirm, B. H., and Pratt, K. A.: Aqueous processing of atmospheric organic particles in cloud water collected via aircraft sampling, Environ. Sci. Technol., 49, 8523-8530, https://doi.org/10.1021/acs.est.5b01639, 2015.
- Bouwman, A., Lee, D., Asman, W., Dentener, F., Van Der Hoek, K., and Olivier, J.: A global high-resolution emission inventory for ammonia, Global Biogeochem. Cy., 11, 561-587, https://doi.org/10.1029/97GB02266, 1997.
 - Cao, F., Zhang, S. C., Kawamura, K., and Zhang, Y. L.: Inorganic markers, carbonaceous components and stable carbon isotope from biomass burning aerosols in Northeast China, Sci. Total Environ., 572, 1244-1251, https://doi.org/10.1016/j.scitotenv.2015.09.099, 2016, 2016.
 - Cao, F., Zhang, S. C., Kawamura, K., Liu, X., Yang, C., Xu, Z., Fan, M., Zhang, W., Bao, M., Chang, Y., Song, W., Liu, S., Lee, X., Li, J., Zhang, G., and Zhang, Y. L.: Chemical characteristics of dicarboxylic acids and related organic compounds in PM_{2.5} during biomass-burning and non-biomass-burning seasons at a rural site of Northeast China, Environ. Pollut., 231, 654-662, https://doi.org/10.1016/j.envpol.2017.08.045, 2017.
 - Chang, Y. H., Liu, X., Deng, C., Dore, A. J., and Zhuang, G.: Source apportionment of atmospheric ammonia before, during, and after the 2014 APEC summit in Beijing using stable nitrogen isotope signatures, Atmos. Chem. Phys., 16, 11635-11647, https://doi.org/10.5194/acp-16-11635-2016, 2016.
- Chang, Y. H., Zhang, Y., Tian, C., Zhang, S., Ma, X., Cao, F., Liu, X., Zhang, W., Kuhn, T., and Lehmann, M. F.: Nitrogen isotope fractionation during gas-to-particle conversion of NO_x to NO₃⁻ in the atmosphere implications for isotope-based NO_x source apportionment, Atmos. Chem. Phys., 18, 11647-11661, https://doi.org/10.5194/acp-18-11647-2018, 2018.
- Chellman, N. J., Hastings, M. G., and McConnell, J. R.: Increased nitrate and decreased δ^{15} N- NO₃⁻ in the Greenland Arctic after 1940 attributed to North American oil burning, Cryosphere Discus, https://doi.org/10.5194/tc-2016-163, 2016.

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 10 December 2018 © Author(s) 2018. CC BY 4.0 License.

410

425

440

- Chen, J. M., Li, C., Ristovski, Z., Milic, A., Gu, Y., Islam, M. S., Wang, S., Hao, J., Zhang, H., He, C., Guo, H., Fu, H., Miljevic, B., Morawska, L., Thai, P., Lam, Y. F., Pereira, G., Ding, A., Huang, X., and Dumka, U. C.: A review of biomass burning: Emissions and impacts on air quality, health and climate in China, Sci. Total Environ., 579, 1000-1034, https://doi.org/10.1016/j.scitotenv.2016.11.025, 2017.
- Chen, Y. C., Christensen, M. W., Stephens, G. L., and Seinfeld, J. H.: Satellite-based estimate of global aerosol-cloud radiative forcing by marine warm clouds, Nature Geosci., 7, 643, https://doi.org/10.1038/ngeo2214, 2014.
- Crutzen, P. J., and Andreae, M. O.: Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles. Science, 250(4988), 1669-1678, https://doi.org/10.1126/science.250.4988.1669, 1990.
 - Demoz, B. B., Collett, J. L., and Daube, B. C.: On the Caltech active strand cloudwater collectors, Atmos. Res., 41, 47-62, https://doi.org/10.1016/0169-8095(95)00044-5, 1996.
- Deng, Y., Li, Y., and Li, L.: Experimental investigation of nitrogen isotopic effects associated with ammonia degassing at 0-70 °C, Geochim. Cosmochim. Ac., 226, 182-191, https://doi.org/10.1016/j.gca.2018.02.007, 2018.
 - Desyaterik, Y., Sun, Y., Shen, X., Lee, T., Wang, X., Wang, T., and Collett, J. L.: Speciation of "brown" carbon in cloud water impacted by agricultural biomass burning in eastern China, J. Geophys. Res., 118, 7389-7399, https://doi.org/10.1002/jgrd.50561, 2013.
 - Duncan, B. N., Lamsal, L. N., Thompson, A. M., Yoshida, Y., Lu, Z., Streets, D. G., Hurwitz, M. M., Pickering, K. E.: A space-based, high-resolution view of notable changes in urban NO_x pollution around the world (2005-2014), J. Geophys. Res., 121, 976-996, 2016.
- Elliott, E., Kendall, C., Wankel, S. D., Burns, D., Boyer, E., Harlin, K., Bain, D., and Butler, T.:

 Nitrogen isotopes as indicators of NO_x source contributions to atmospheric nitrate deposition across the Midwestern and northeastern United States, Environ. Sci. Technol., 41, 7661-7667, https://doi.org/10.1021/es070898t, 2007.
- Elliott, E. M., Kendall, C., Boyer, E. W., Burns, D. A., Lear, G. G., Golden, H. E., Harlin, K., Bytnerowicz, A., Butler, T. J., and Glatz, R.: Dual nitrate isotopes in dry deposition: Utility for partitioning NO_x source contributions to landscape nitrogen deposition, J. Geophys. Res., 114, https://doi.org/10.1029/2008jg000889, 2009.
 - Fang, Y. T., Koba, K., Wang, X. M., Wen, D. Z., Li, J., Takebayashi, Y., Liu, X. Y., and Yoh, M.: Anthropogenic imprints on nitrogen and oxygen isotopic composition of precipitation nitrate in a nitrogen-polluted city in southern China, Atmos. Chem. Phys., 11, 1313-1325, https://doi.org/10.5194/acp-11-1313-2011, 2011.
 - Felix J. D., and E. M. Elliott.: The agricultural history of human-nitrogen interactions as recorded in ice core δ^{15} N-NO₃-, Geophys. Res. Lett., 40, 1642-1646, https://doi.org/10.1002/grl.50209, 2013.
- Felix, J. D., and Elliott, E. M.: Isotopic composition of passively collected nitrogen dioxide emissions: Vehicle, soil and livestock source signatures, Atmos. Environ., 92, 359-366, https://doi.org/10.1016/j.atmosenv.2014.04.005, 2014.

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 10 December 2018 © Author(s) 2018. CC BY 4.0 License.

450

460

- Felix, J. D., Elliott, E. M., Avery, G. B., Kieber, R. J., Mead, R. N., Willey, J. D., and Mullaugh, K. M.: Isotopic composition of nitrate in sequential Hurricane Irene precipitation samples: Implications for changing NO_x sources, Atmos. Environ., 106, 191-195, https://doi.org/10.1016/j.atmosenv.2015.01.075, 2015.
- Felix, J. D., Elliott, E. M., Gish, T. J., McConnell, L. L., and Shaw, S. L.: Characterizing the isotopic composition of atmospheric ammonia emission sources using passive samplers and a combined oxidation-bacterial denitrifier approach, Rapid Commun. Mass Sp., 27, 2239-2246, https://doi.org/10.1002/rcm.6679, 2013.
- Felix, J. D., Elliott, E. M., and Shaw, S. L.: Nitrogen isotopic composition of coal-fired power plant NO_x: Influence of emission controls and implications for global emission inventories, Environ. Sci. Technol., 46, 3528-3535, https://doi.org/10.1021/es203355v, 2012.
 - Fenech, C., Rock, L., Nolan, K., Tobin, J., and Morrissey, A.: The potential for a suite of isotope and chemical markers to differentiate sources of nitrate contamination: a review. Water Res., 46, 2023-2041, https://doi.org/10.1016/j.watres.2012.01.044, 2012.
 - Fibiger, D. L., and Hastings, M. G.: First measurements of the nitrogen isotopic composition of NO_x from biomass burning, Environ. Sci. Technol., 50, 11569-11574. 10.1021/acs.est.6b03510, 2016.
- Fomba, K. W., van Pinxteren, D., Müller, K., Iinuma, Y., Lee, T., Collett, J. L., and Herrmann, H.:

 Trace metal characterization of aerosol particles and cloud water during HCCT 2010,
 Atmos. Chem. Phys., 15, 8751-8765, https://doi.org/10.5194/acp-15-8751-2015, 2015.
- Gioda, A., Reyes-Rodr guez, G. J., Santos-Figueroa, G., Collett, J. L., Decesari, S., Ramos, M. d. C. K. V., Bezerra Netto, H. J. C., de Aquino Neto, F. R., and Mayol-Bracero, O. L.: Speciation of water-soluble inorganic, organic, and total nitrogen in a background marine environment: Cloud water, rainwater, and aerosol particles, J. Geophys. Res., 116, https://doi.org/10.1029/2010JD015010, 2011.
 - Hastings, M., Casciotti, K. L., and Elliott, E. M.: Stable isotopes as tracers of anthropogenic nitrogen sources, deposition, and impacts. Elements, 9, 339-344, https://doi.org/10.2113/gselements.9.5.339, 2013.
- Hastings, M., Jarvis, J., and Steig, E.: Anthropogenic impacts on nitrogen isotopes of ice-core nitrate. Science, 324, 1288-1288, https://doi.org/10.1126/science.1170510, 2009.
 - Hastings, M., Sigman, D. M., and Lipschultz, F.: Isotopic evidence for source changes of nitrate in rain at Bermuda, J. Geophys. Res., 108, https://doi.org/10.1029/2003JD003789, 2003.
- Heald, C. L., Collett Jr, J., Lee, T., Benedict, K., Schwandner, F., Li, Y., Clarisse, L., Hurtmans, D., Van Damme, M., Clerbaux, C.: Atmospheric ammonia and particulate inorganic nitrogen over the United States, Atmos. Chem. Phys., 12(21), 10295-10312, 2012.
 - Heaton, T. H. E., Spiro, B., and Robertson, S. M. C.: Potential canopy influences on the isotopic composition of nitrogen and sulphur in atmospheric deposition. Oecologia, 109, 600-607, https://doi.org/10.1007/s004420050122, 1997.
- Herrmann, H., Schaefer, T., Tilgner, A., Styler, S. A., Weller, C., Teich, M., and Otto, T.: Tropospheric aqueous-phase chemistry: Kinetics, mechanisms, and its coupling to a

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 10 December 2018 © Author(s) 2018. CC BY 4.0 License.

495

505

- changing gas phase. Chem. Reviews, 115, 4259-4334, https://doi.org/10.1021/cr500447k, 2015.
- Hoffmann, D., Tilgner, A., Iinuma, Y., and Herrmann, H.: Atmospheric stability of levoglucosan:

 A detailed laboratory and modeling study, Environ. Sci. Technol., 44, 694-699, https://doi.org/10.1021/es902476f, 2010.
 - Huang, C., Chen, C. H., Li, L., Cheng, Z., Wang, H. L., Huang, H. Y., Streets, D. G., Wang, Y. J., Zhang, G. F., Chen, Y. R.: Emission inventory of anthropogenic air pollutants and VOC species in the Yangtze River Delta region, China, Atmos. Chem. Phys., 11, 4105-4120, 2011.
 - Jaegle, L., Steinberger, L., Martin, R. V., Chance, K.: Global partitioning of NO_x sources using satellite observations: Relative roles of fossil fuel combustion, biomass burning and soil emissions. Faraday Discus., 130, 407-423, 2005.
- Kang, Y., Liu, M., Song, Y., Huang, X., Yao, H., Cai, X., Zhang, H., Kang, L., Liu, X., Yan, X., He, H., Zhang, Q., Shao, M., and Zhu, T.: High-resolution ammonia emissions inventories in China from 1980 to 2012, Atmos. Chem. Phys., 16, 2043-2058, https://doi.org/10.5194/acp-16-2043-2016, 2016.
 - Kawashima, H., and Kurahashi, T.: Inorganic ion and nitrogen isotopic compositions of atmospheric aerosols at Yurihonjo, Japan: Implications for nitrogen sources, Atmos. Environ., 45, 6309-6316, https://doi.org/10.1016/j.atmosenv.2011.08.057, 2011.
 - Kim, I. N., Lee, K., Gruber, N., Karl, D. M., Bullister, J. L., Yang, S., and Kim, T. W.: Increasing anthropogenic nitrogen in the North Pacific Ocean. Science, 346, 1102-1106, https://doi.org/10.1126/science.1258396, 2014.
- Kundu, S., Kawamura, K., and Lee, M.: Seasonal variation of the concentrations of nitrogenous species and their nitrogen isotopic ratios in aerosols at Gosan, Jeju Island: Implications for atmospheric processing and source changes of aerosols, J. Geophys. Res., 115, https://doi.org/10.1029/2009JD013323, 2010.
- Lamsal, L. N., Martin, R. V., Padmanabhan, A., van Donkelaar, A., Zhang, Q., Sioris, C. E., Chance, K., Kurosu, T. P., Newchurch, M. J.: Application of satellite observations for timely updates to global anthropogenic NO_x emission inventories, Geophys. Res. Lett., 38, (5), https://doi.org/10.1029/2010GL046476, 2011.
 - Lance, S., Barth, M., and Carlton, A.: Multiphase chemistry: Experimental design for coordinated measurement and modeling studies of cloud processing at a mountaintop, B. Am. Meteorol. Soc., 98, ES163-ES167, https://doi.org/10.1175/bams-d-17-0015.1, 2017.
- Leng, Q., Cui, J., Zhou, F., Du, K., Zhang, L., Fu, C., Liu, Y., Wang, H., Shi, G., Gao, M., Yang, F., and He, D.: Wet-only deposition of atmospheric inorganic nitrogen and associated isotopic characteristics in a typical mountain area, southwestern China, Sci. Total Environ., 616, 55-63, https://doi.org/10.1016/j.scitotenv.2017.10.240, 2017.
- Levy, H., Moxim, W. J., Kasibhatla, P. S.: A global three-dimensional time-dependent lightning source of tropospheric NO_x, J. Geophys. Res., 101, 22911-22922, 1996.
 - Li, J., Wang, X., Chen, J., Zhu, C., Li, W., Li, C., Liu, L., Xu, C., Wen, L., Xue, L., Wang, W., Ding, A., and Herrmann, H.: Chemical composition and droplet size distribution of cloud

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 10 December 2018 © Author(s) 2018. CC BY 4.0 License.

545

- at the summit of Mount Tai, China, Atmos. Chem. Phys., 17, 9885-9896, https://doi.org/10.5194/acp-17-9885-2017, 2017.
- Li, L., Lollar, B. S., Li, H., Wortmann, U. G., and Lacrampe-Couloume, G.: Ammonium stability and nitrogen isotope fractionations for NH₃(aq)-NH₃(gas) systems at 20-70 °C and pH of 2-13: Applications to habitability and nitrogen cycling in low-temperature hydrothermal systems, Geochim. Cosmochim. Ac., 84, 280-296, https://doi.org/10.1016/j.gca.2012.01.040, 2012.
- Li, Q., Jiang, J., Cai, S., Zhou, W., Wang, S., Duan, L., and Hao, J.: Gaseous ammonia emissions from coal and biomass combustion in household stoves with different combustion efficiencies, Environ. Sci. Technol. Lett., 3, 98-103, https://doi.org/10.1021/acs.estlett.6b00013, 2016a.
- Li, T., Wang, Y., Mao, H., Wang, S., Talbot, R. W., Zhou, Y., Wang, Z., Nie, X., and Qie, G.: Insights on chemistry of mercury species in clouds over Northern China: Complexation and adsorption, Environ. Sci. Technol., 52, 5125-5134, https://doi.org/10.1021/acs.est.7b06669, 2018.
 - Li, Y., Schichtel, B. A., Walker, J. T., Schwede, D. B., Chen, X., Lehmann, C. M. B., Puchalski, M. A., Gay, D. A., and Collett, J. L.: Increasing importance of deposition of reduced nitrogen in the United States, P. Natl. Acad. Sci. USA., https://doi.org/10.1073/pnas.1525736113, 2016b.
 - Lin, C. T., Jickells, T. D., Baker, A. R., Marca, A., and Johnson, M. T.: Aerosol isotopic ammonium signatures over the remote Atlantic Ocean, Atmos. Environ., 133, 165-169, https://doi.org/10.1016/j.atmosenv.2016.03.020, 2016.
- Lin, Q., Zhang, G., Peng, L., Bi, X., Wang, X., Brechtel, F. J., Li, M., Chen, D., Peng, P., Sheng, G., and Zhou, Z.: In situ chemical composition measurement of individual cloud residue particles at a mountain site, southern China, Atmos. Chem. Phys., 17, 8473-8488, https://doi.org/10.5194/acp-17-8473-2017, 2017.
- Liu, D., Fang, Y., Tu, Y., and Pan, Y.: Chemical method for nitrogen isotopic analysis of ammonium at natural abundance, Anal. Chem., 86, 3787-3792, https://doi.org/10.1021/ac403756u, 2014.
 - Liu, X., Zhang, Y., Han, W., Tang, A., Shen, J., Cui, Z., Vitousek, P., Erisman, J. W., Goulding, K., Christie, P., Fangmeier, A., and Zhang, F.: Enhanced nitrogen deposition over China. Nature, 494, 459-462, https://doi.org/10.1038/nature11917, 2013.
- Liu, L., Zhang, J., Xu, L., Yuan, Q., Huang, D., Chen, J., Shi, Z., Sun, Y., Fu, P., Wang, Z., Zhang, D., and Li, W.: Cloud scavenging of anthropogenic refractory particles at a mountain site in North China, Atmos. Chem. Phys., 18, 14681-14693, https://doi.org/10.5194/acp-18-14681-2018, 2018.
- Lobert, J. M., Scharffe, D. H., Hao, W. M., and Crutzen, P. J.: Importance of biomass burning in the atmospheric budgets of nitrogen-containing gases. Nature, 346, 552, https://doi.org/10.1038/346552a0, 1990.
 - McIlvin, M. R., and Altabet, M. A.: Chemical conversion of nitrate and nitrite to nitrous oxide for nitrogen and oxygen isotopic analysis in freshwater and seawater, Anal. Chem., 77, 5589-5595, https://doi.org/10.1021/ac050528s, 2005.

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 10 December 2018 © Author(s) 2018. CC BY 4.0 License.

575

585

590

- Michalski, G., Bockheim, J. G., Kendall, C., and Thiemens, M.: Isotopic composition of Antarctic Dry Valley nitrate: Implications for NO_y sources and cycling in Antarctica, Geophys. Res. Lett., 32, https://doi.org/10.1029/2004GL022121, 2005.
 - Miyazaki, K., Eskes, H., Sudo, K., Boersma, K. F., Bowman, K., Kanaya, Y.: Decadal changes in global surface NO_x emissions from multi-constituent satellite data assimilation, Atmos. Chem. Phys., 17, 807-837, 2017.
 - Morin, S., Savarino, J., Frey, M. M., Yan, N., Bekki, S., Bottenheim, J. W., and Martins, J. M.: Tracing the origin and fate of NO_x in the Arctic atmosphere using stable isotopes in nitrate. Science, 322, 730-732, https://doi.org/10.1126/science.1161910, 2008.
- Morino, Y., Kondo, Y., Takegawa, N., Miyazaki, Y., Kita, K., Komazaki, Y., Fukuda, M., Miyakawa, T., Moteki, N., Worsnop, D. R.: Partitioning of HNO₃ and particulate nitrate over Tokyo: Effect of vertical mixing, J. Geophys. Res., 111, https://doi.org/10.1029/2005JD006887, 2006.
 - Norris, J. R., Allen, R. J., Evan, A. T., Zelinka, M. D., O'Dell, C. W., and Klein, S. A.: Evidence for climate change in the satellite cloud record. Nature, 536, 72, https://doi.org/10.1038/nature18273, 2016.
 - Okin, G. S., Baker, A. R., Tegen, I., Mahowald, N. M., Dentener, F. J., Duce, R. A., Galloway, J. N., Hunter, K., Kanakidou, M., Kubilay, N., Prospero, J. M., Sarin, M., Surapipith, V., Uematsu, M., and Zhu, T.: Impacts of atmospheric nutrient deposition on marine productivity: Roles of nitrogen, phosphorus, and iron. Global Biogeochem. Cy., 25, https://doi.org/doi:10.1029/2010GB003858, 2011.
 - Olivier, J., Bouwman, A., Van der Hoek, K., and Berdowski, J.: Global air emission inventories for anthropogenic sources of NO_x, NH₃ and N₂O in 1990, Environ. Pollut., 102, 135-148, https://doi.org/10.1016/B978-0-08-043201-4.50024-1, 1998.
- Park, Y., Park, K., Kim, H., Yu, S., Noh, S., Kim, M., Kim, J., Ahn, J., Lee, M., Seok, K., and Kim, Y.: Characterizing isotopic compositions of TC-C, NO₃-N, and NH₄+N in PM_{2.5} in South Korea: Impact of China's winter heating, Environ. Pollut., 233, 735-744, https://doi.org/10.1016/j.envpol.2017.10.072, 2018.
 - Paulot, F. and Jacob, D. J.: Hidden cost of US agricultural exports: particulate matter from ammonia emissions, Environ. Sci. Technol., 48, 903-908, 2014.
- Proemse, B. C., Mayer, B., Chow, J. C., and Watson, J. G.: Isotopic characterization of nitrate, ammonium and sulfate in stack PM_{2.5} emissions in the Athabasca Oil Sands Region, Alberta, Canada, Atmos. Environ., 60, 555-563, https://doi.org/10.1016/j.atmosenv.2012.06.046, 2012.
- Price, C., Penner, J., Prather, M.: NO_x from lightning: 1. Global distribution based on lightning physics, J. Geophys. Res., 102, 5929-5941, 1997.
 - Ravishankara, A. R.: Heterogeneous and multiphase chemistry in the troposphere. Science, 276, 1058-1065, https://doi.org/10.1126/science.276.5315.1058, 1997.
- Reche, C., Viana, M., Pandolfi, M., Alastuey, A., Moreno, T., Amato, F., Ripoll, A., Querol, X.: Urban NH₃ levels and sources in a Mediterranean environment, Atmos. Environ., 57, 153-164, 2012.

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 10 December 2018 © Author(s) 2018. CC BY 4.0 License.

- Reis, S., Pinder, R. W., Zhang, M., Lijie, G., Sutton, M. A.: Reactive nitrogen in atmospheric emission inventories, Atmos. Chem. Phys., 9, 7657-7677, 2009.
- Richter, A., Burrows, J. P., Nuss, H., Granier, C., Niemeier, U.: Increase in tropospheric nitrogen dioxide over China observed from space. Nature, 437, 129-132, 2005.
- Sang, X. F., Gensch, I., Kammer, B., Khan, A., Kleist, E., Laumer, W., Schlag, P., Schmitt, S. H., Wildt, J., Zhao, R., Mungall, E. L., Abbatt, J. P. D., and Kiendler-Scharr, A.: Chemical stability of levoglucosan: an isotopic perspective, Geophys. Res. Lett., 43, 5419-5424, https://doi.org/10.1002/2016GL069179, 2016.
- Savard, M. M., Cole, A. S., Vet, R., and Smirnoff, A.: The $\Delta^{17}O$ and $\delta^{18}O$ values of atmospheric nitrates simultaneously collected downwind of anthropogenic sources implications for polluted air masses, Atmos. Chem. Phys., 18, 10373-10389, https://doi.org/10.5194/acp-18-10373-2018, 2018.
 - Seinfeld, J. and Pandis, S. N.: Atmospheric Chemistry and Physics: From air pollution to climate change. John Wiley and Sons, 2012.
- Schlesinger, W., and Hartley, A.: A global budget for atmospheric NH₃. Biogeochem., 15, 191-211, https://doi.org/10.1007/BF00002936, 1992.
 - Schurman, M. I., Boris, A., Desyaterik, Y., and Collett, J. L.: Aqueous secondary organic aerosol formation in ambient cloud water photo-oxidations, Aerosol Air Qual. Res., 18, 15-25, https://doi.org/10.4209/aaqr.2017.01.0029, 2018.
- Seinfeld, J. H., Bretherton, C., Carslaw, K. S., Coe, H., DeMott, P. J., Dunlea, E. J., Feingold, G., Ghan, S., Guenther, A. B., Kahn, R., Kraucunas, I., Kreidenweis, S. M., Molina, M. J., Nenes, A., Penner, J. E., Prather, K. A., Ramanathan, V., Ramaswamy, V., Rasch, P. J., Ravishankara, A. R., Rosenfeld, D., Stephens, G., and Wood, R.: Improving our fundamental understanding of the role of aerosol-cloud interactions in the climate system,
 P. Natl. Acad. Sci. USA., 113, 5781-5790, https://doi.org/10.1073/pnas.1514043113, 2016.
 - Slade, J. H., Shiraiwa, M., Arangio, A., Su, H., Pöschl, U., Wang, J., and Knopf, D. A.: Cloud droplet activation through oxidation of organic aerosol influenced by temperature and particle phase state, Geophys. Res. Lett., 44, 1583-1591, https://doi.org/doi:10.1002/2016GL072424, 2017.
- Smirnoff, A., Savard, M. M., Vet, R., and Simard, M. C.: Nitrogen and triple oxygen isotopes in near-road air samples using chemical conversion and thermal decomposition, Rapid Commun. Mass Sp., 26, 2791-2804, https://doi.org/10.1002/rcm.6406, 2012.
- Souri, A. H., Choi, Y., Jeon, W., Kochanski, A. K., Diao, L., Mandel, J., Bhave, P. V., and Pan, S.: Quantifying the impact of biomass burning emissions on major inorganic aerosols and their precursors in the U.S, J. Geophys. Res., 122, 12, https://doi.org/10.1002/2017JD026788, 2017.
 - Suarez-Bertoa, R., Zardini, A. A., Astorga, C.: Ammonia exhaust emissions from spark ignition vehicles over the New European Driving Cycle, Atmos. Environ., 97, 43-53, 2014.
- Teng, X., Hu, Q., Zhang, L., Qi, J., Shi, J., Xie, H., Gao, H., Yao, X.: Identification of major sources of atmospheric NH₃ in an urban environment in Northern China during wintertime, Environ. Sci. Technol., 51, 6839-6848, 2017.

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 10 December 2018 © Author(s) 2018. CC BY 4.0 License.

670

685

- Tu, Y., Fang, Y., Liu, D., and Pan, Y.: Modifications to the azide method for nitrate isotope analysis, Rapid Commun. Mass Sp., 30, 1213-1222, https://doi.org/10.1002/rcm.7551, 2016.
- van Pinxteren, D., Fomba, K. W., Mertes, S., Müller, K., Spindler, G., Schneider, J., Lee, T., Collett, J. L., and Herrmann, H.: Cloud water composition during HCCT-2010: Scavenging efficiencies, solute concentrations, and droplet size dependence of inorganic ions and dissolved organic carbon, Atmos. Chem. Phys., 16, 3185-3205, https://doi.org/10.5194/acp-16-3185-2016, 2016.
- Voigt, A., and Shaw, T. A.: Circulation response to warming shaped by radiative changes of clouds and water vapour, Nature Geosci., 8, 102-106, https://doi.org/10.1038/ngeo2345, 2015.
 - Walters, W. W., Goodwin, S. R., and Michalski, G.: Nitrogen stable isotope composition (δ^{15} N) of vehicle-emitted NO_x, Environ. Sci. Technol., 49, 2278-2285, https://10.1021/es505580v, 2015.
- Walters, W., and Michalski, G.: Theoretical calculation of nitrogen isotope equilibrium exchange fractionation factors for various NO_y molecules, Geochim. Cosmochim. Ac., 164, 284-297, https://doi.org/10.1016/j.gca.2015.05.029, 2015.
 - Walters, W., Simonini, D. S., and Michalski, G.: Nitrogen isotope exchange between NO and NO₂ and its implications for $\delta^{15}N$ variations in tropospheric NO_x and atmospheric nitrate, Geophys. Res. Lett., 43, 440-448, https://doi.org/10.1002/2015g1066438, 2016.
 - Walters, W. W., Tharp, B. D., Fang, H., Kozak, B. J., and Michalski, G.: Nitrogen isotope composition of thermally produced NO_x from various fossil-fuel combustion sources, Environ. Sci. Technol., 49, 11363-11371, https://doi.org/10.1021/acs.est.5b02769, 2015.
- Wang, Y. L., Liu, X. Y., Song, W., Yang, W., Han, B., Dou, X. Y., Zhao, X. D., Song, Z. L., Liu, C. Q., and Bai, Z. P.: Source appointment of nitrogen in $PM_{2.5}$ based on bulk $\delta^{15}N$ signatures and a Bayesian isotope mixing model, Tellus B, 69, 1299672, https://doi.org/10.1080/16000889.2017.1299672, 2017a.
- Wang, Z., Wang, W., Tham, Y. J., Li, Q., Wang, H., Wen, L., Wang, X., Wang, T.: Fast heterogeneous N₂O₅ uptake and ClNO₂ production in power plant and industrial plumes observed in the nocturnal residual layer over the North China Plain, Atmos. Chem. Phys., 17, 12361-12378, 2017b.
 - Yang, J. Y. T., Hsu, S. C., Dai, M. H., Hsiao, S. S. Y., and Kao, S. J.: Isotopic composition of water-soluble nitrate in bulk atmospheric deposition at Dongsha Island: Sources and implications of external N supply to the northern South China Sea. Biogeosci., 11, 1833-1846, https://doi.org/10.5194/bg-11-1833-2014, 2014.
 - Yeatman, S., Spokes, L., Dennis, P., and Jickells, T.: Comparisons of aerosol nitrogen isotopic composition at two polluted coastal sites, Atmos. Environ., 35, 1307-1320, https://doi.org/10.1016/S1352-2310(00)00408-8, 2001.
- Yienger, J. J. and Levy, H.: Empirical model of global soil-biogenic NO_x emissions, J. Geophys. Res., 100, 11447-11464, 1995.

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 10 December 2018 © Author(s) 2018. CC BY 4.0 License.

705

- Zhang, C., Geng, X., Wang, H., Zhou, L., Wang, B.: Emission factor for atmospheric ammonia from a typical municipal wastewater treatment plant in South China, Environ. Pollut., 220, 963-970, 2017.
- Zhang, L., Chen, Y., Zhao, Y., Henze, D. K., Zhu, L., Song, Y., Paulot, F., Liu, X., Pan, Y., Lin, Y., Huang, B.: Agricultural ammonia emissions in China: Reconciling bottom-up and top-down estimates, Atmos. Chem. Phys., 18, 339-355, 2018.
 - Zhang, Y. L., and Cao, F.: Is it time to tackle PM_{2.5} air pollutions in China from biomass-burning emissions?, Environ. Pollut., 202, 217-219, https://doi.org/10.1016/j.envpol.2015.02.005, 2015.
- Zhang, Y., Zheng, L. X., Liu, X. J., Jickells, T., Cape, J. N., Goulding, K., Fangmeier, A., and Zhang, F. S.: Evidence for organic N deposition and its anthropogenic sources in China, Atmos. Environ., 42, 1035-1041, https://doi.org/10.1016/j.atmosenv.2007.12.015, 2008.
 - Zhang, Y., Dore, A. J., Ma, L., Liu, X. J., Ma, W. Q., Cape, J. N., and Zhang, F. S.: Agricultural ammonia emissions inventory and spatial distribution in the North China Plain, Environ. Pollut., 158, 490-501, https://doi.org/10.1016/j.atmosenv.2007.12.015, 2010.
 - Zhao, Y., Zhang, J., and Nielsen, C. P.: The effects of recent control policies on trends in emissions of anthropogenic atmospheric pollutants and CO₂ in China, Atmos. Chem. Phys., 13, 487-508, https://doi.org/10.5194/acp-13-487-2013, 2013.
- Zong, Z., Wang, X., Tian, C., Chen, Y., Fang, Y., Zhang, F., Li, C., Sun, J., Li, J., and Zhang, G.:
 First assessment of NO_x sources at a regional background site in North China using isotopic analysis linked with modeling, Environ. Sci. Technol., 51, https://doi.org/10.1021/acs.est.6b06316, 2017.